-
آرشیو :
نسخه پاییز و زمستان 1399
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1251
-
موضوع :
موضوعی تعریف نشده!
-
نویسنده/گان :
حسن پاشایی، احد قائمی
-
کلید واژه :
انتقال جرم، ستون حبابی، جذب CO2، فاکتور بهبود، نانو ذرات.
-
Title :
A Review of the Effect of Nano Particles in Amine Solution on CO2 Absorption
-
Abstract :
In this study, nano metal oxides such as Fe3O4, NiO, Al2O3, TiO2 and SiO2 are used with the base fluid to absorb carbon dioxide in a bubble column. Then, analyze the effect of nano particles and their concentrations is investigated in absorption rate of CO2 bubbles. The studies are carried out that adding nano particle in base fluid, initially enhanced mass transfer properties in CO2 capture process and then have the opposite effect. And also, Studies show that by increasing the amount of nano particles in the base fluid in concentrations less than optimum concentration, Gas absorption rate increases. But, by adding nano particles to more than optimal concentration, decreased the absorption rate. Also, adding nano particles to the different base fluids shows that the nano particles in various solutions have different effects and are not same improve the rate of CO2 capture. Review of the research shows that the Brownian motion and the effects of grazing or shuttle are the most important factors in increasing the mass transfer in nano fluids. That this increase, will be followed improving the efficiency of gas absorption. Generally, in this study is intended to expressed the principles and equations of bubble column in the absorption of carbon dioxide by nano amine solution, is create the field for optimal use of this equipment.
-
key words :
Bubble Column, Mass Transfer, CO2 Capture, Nano Particles, Enhanced Factor.
-
مراجع :
1. Pashaei, H., M.N. Zarandi, and A. Ghaemi, Experimental study and modeling of CO 2 absorption into diethanolamine solutions using stirrer bubble column. Chem. Eng. Res. Des., 2017. 121: p. 32-43.
2. Ghaemi, A. and A.H. Behroozi, Comparison of hydroxide‐based adsorbents of Mg (OH) 2 and Ca (OH) 2 for CO2 capture: utilization of response surface methodology, kinetic, and isotherm modeling. Greenhouse Gases: Science and Technology, 2020. 10(5): p. 948-964.
3. Khajeh, M. and A. Ghaemi, Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite. Journal of Environmental Chemical Engineering, 2020. 8(2): p. 103663.
4. Etemad, E., A. Ghaemi, and M. Shirvani, Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. International Journal of Greenhouse Gas Control, 2015. 42: p. 288-295.
5. Fashi, F., A. Ghaemi, and P. Moradi, Piperazine‐modified activated alumina as a novel promising candidate for CO2 capture: experimental and modeling. Greenhouse Gases: Science and Technology, 2019. 9(1): p. 37-51.
6. Taheri, F.S., et al., High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite. Energy & Fuels, 2019. 33(6): p. 5384-5397.
7. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. Journal of Natural Gas Science and Engineering, 2015. 24: p. 18-25.
8. Pashaei, H., A. Ghaemi, and M. Nasiri, Modeling and experimental study on the solubility and mass transfer of CO 2 into aqueous DEA solution using a stirrer bubble column. RSC Adv., 2016. 6(109): p. 108075-108092.
9. Ghaemi, A., S. Shahhosseini, and M.G. Maragheh, Nonequilibrium modeling of reactive absorption processes. Chemical Engineering Communications, 2009. 196(9): p. 1076-1089.
10. Ghaemi, A., et al., Kinetics and absorption rate of CO2 into partially carbonated ammonia solutions. Chemical Engineering Communications, 2011. 198(10): p. 1169-1181.
11. Ghaemi, A., S. Shahhosseini, and M. Ghannadi Maragheh, Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2011. 30(2): p. 43-50.
12. Niknafs, H., A. Ghaemi, and S. Shahhosseini, Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat and Mass Transfer, 2015. 51(8): p. 1131-1140.
13. Ghaemi, A. and A. Hemmati, Mass transfer coefficient for PZ+ CO 2+ H 2 O system in a packed column. Heat and Mass Transfer, 2020: p. 1-15.
14. Ghaemi, A., M. Torab-Mostaedi, and M.G. Maragheh, Nonequilibrium dynamic modeling of simultaneous reactive absorption of gases. Journal of the Taiwan Institute of Chemical Engineers, 2011. 42(1): p. 173-179.
15. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, Chemical absorption of CO 2 into an aqueous piperazine (PZ) solution: development and validation of a rigorous dynamic rate-based model. RSC Adv., 2016. 6(46): p. 40017-40032.
16. Amiri, M., S. Shahhosseini, and A. Ghaemi, Optimization of CO2 capture process from simulated flue gas by dry regenerable alkali metal carbonate based adsorbent using response surface methodology. Energy Fuels, 2017. 31(5): p. 5286-5296.
17. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, CO2 chemical absorption into aqueous solutions of piperazine: modeling of kinetics and mass transfer rate. Journal of Natural Gas Science and Engineering, 2015. 26: p. 1059-1067.
18. Ghaemi, A., S. Shahhosseini, and M.G. Maragheh, Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chemical Engineering Journal, 2009. 149(1-3): p. 110-117.
19. Ha, J., Characteristics of Heat and Mass transfer properties by using silica nanoparticles in ammonia-water system. 2002, MA thesis, Korea university, Korea.
20. Naeem, S., A. Ghaemi, and S. Shahhosseini, Experimental investigation of CO 2 capture using sodium hydroxide particles in a fluidized bed. Korean Journal of Chemical Engineering, 2016. 33(4): p. 1278-1285.
21. Naeem, S., S. Shahhosseini, and A. Ghaemi, Simulation of CO2 capture using sodium hydroxide solid sorbent in a fluidized bed reactor by a multi-layer perceptron neural network. Journal of Natural Gas Science and Engineering, 2016. 31: p. 305-312.
22. Mirzaei, F. and A. Ghaemi, Mass Transfer Modeling of CO2 Absorption into Blended Aqueous MDEA–PZ Solution. Iranian Journal of Oil and Gas Science and Technology, 2020. 9(3): p. 77-101.
23. Ghaemi, A., A.H. Behroozi, and H. Mashhadimoslem, Mass Transfer Flux of CO2 into Methyldiethanolamine Solution in a Reactive‐Absorption Process. Chemical Engineering & Technology, 2020. 43(10): p. 2083-2091.
24. Pashaei, H., et al., Experimental investigation of the effect of nano heavy metal oxide particles in Piperazine solution on CO2 absorption using a stirrer bubble column. Energy Fuels, 2018. 32(2): p. 2037-2052.
25. Keblinski, P., et al., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer, 2002. 45(4): p. 855-863.
26. Kang, Y.T., H.J. Kim, and K.I. Lee, Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International journal of refrigeration, 2008. 31(5): p. 850-856.
27. Pineda, I.T., et al., CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. International journal of refrigeration, 2012. 35(5): p. 1402-1409.
28. Niu, X.F., K. Du, and F. Xiao, Experimental study on ammonia-water falling film absorption in external magnetic fields. International journal of refrigeration, 2010. 33(4): p. 686-694.
29. Wu, W.-D., et al., Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field. Energy and buildings, 2013. 57: p. 268-277.
30. Salimi, J., M. Haghshenasfard, and S.G. Etemad, CO 2 absorption in nanofluids in a randomly packed column equipped with magnetic field. Heat and mass transfer, 2015. 51(5): p. 621-629.
31. Haghtalab, A., M. Mohammadi, and Z. Fakhroueian, Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid phase equilibria, 2015. 392: p. 33-42.
32. Lee, J.K., et al., The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. International journal of refrigeration, 2010. 33(2): p. 269-275.
33. Amaris, C., M. Bourouis, and M. Vallès, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber. Energy, 2014. 68: p. 519-528.
34. Lee, J.W. and Y.T. Kang, CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy, 2013. 53: p. 206-211.
35. Jung, J.-Y., J.W. Lee, and Y.T. Kang, CO 2 absorption characteristics of nanoparticle suspensions in methanol. Journal of mechanical science and technology, 2012. 26(8): p. 2285-2290.
36. Pashaei, H. and A. Ghaemi, CO2 absorption into aqueous diethanolamine solution with nano heavy metal oxide particles using stirrer bubble column: Hydrodynamics and mass transfer. Journal of Environmental Chemical Engineering, 2020: p. 104110.
37. Jiang, J., et al., Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles. International Journal of greenhouse gas control, 2014. 29: p. 135-141.
38. Heydarifard, M., et al., Reactive absorption of CO2 into Piperazine aqueous solution in a stirrer bubble column: Modeling and experimental. Int. J. Greenhouse Gas Control, 2018. 79: p. 91-116.
39. Pashaei, H., A. Ghaemi, and M. Nasiri, Experimental investigation of CO2 removal using Piperazine solution in a stirrer bubble column. Int. J. Greenhouse Gas Control, 2017. 63: p. 226-240.
40. Kim, J.-K., J.Y. Jung, and Y.T. Kang, The effect of nano-particles on the bubble absorption performance in a binary nanofluid. International journal of refrigeration, 2006. 29(1): p. 22-29.
41. Lee, J.W., et al., CO2 bubble absorption enhancement in methanol-based nanofluids. International journal of refrigeration, 2011. 34(8): p. 1727-1733.
42. Pang, C., et al., Mass transfer enhancement by binary nanofluids (NH3/H2O+ Ag nanoparticles) for bubble absorption process. International journal of refrigeration, 2012. 35(8): p. 2240-2247.
43. Kim, W.-g., et al., Synthesis of silica nanofluid and application to CO2 absorption. Separation Science and Technology, 2008. 43(11-12): p. 3036-3055.
44. Fakhroueian, Z., et al., Influence of modified ZnO quantum dots and nanostructures as new antibacterials. Advances in nanoparticles, 2013. 2(03): p. 247.
45. Lam, S.-M., et al., Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–vis photocatalytic activities. Separation and Purification Technology, 2014. 132: p. 378-387.
46. Djurišić, A.B. and Y.H. Leung, Optical properties of ZnO nanostructures. small, 2006. 2(8‐9): p. 944-961.
47. Kurtz, M., et al., Active Sites on Oxide Surfaces: ZnO‐Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie International Edition, 2005. 44(18): p. 2790-2794.
48. Xia, X., et al., Probing the surface heterogeneity of polycrystalline zinc oxide by static adsorption microcalorimetry. 1. The influence of the thermal pretreatment on the adsorption of carbon dioxide. The Journal of Physical Chemistry C, 2008. 112(29): p. 10938-10942.
49. Wöll, C., Structure and Chemical Properties of Oxide Nanoparticles Determined by Surface-Ligand IR Spectroscopy. ACS Catalysis, 2019. 10(1): p. 168-176.
50. Noei, H., et al., Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy. The Journal of Physical Chemistry C, 2011. 115(4): p. 908-914.
51. Jiang, J., et al., Chemical absorption kinetics in MEA solution with nano-particles. Energy Procedia, 2013. 37: p. 518-524.
52. Sumin, L., et al., Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles. Chinese Journal of Chemical Engineering, 2013. 21(9): p. 983-990.
53. Pashaei, H., et al., Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology. ACS omega, 2020. 5(15): p. 8432-8448.
54. Critchfield, J., CO2 absorption/desorption in methyldiethanolamine solutions promoted with MEA and D2EA. Mass transfer and reaction kinetics. University of Texas, Austin, TX, USA, 1988.
55. Bosch, H., G. Versteeg, and W. Van Swaaij, Desorption of acid gases (CO2 and H2S) from loaded alkanolamine solutions. 1990, Elsevier Science Publishers BV: Amsterdam. p. 505-512.
56. Xu, G.-W., et al., Desorption of CO2 from MDEA and activated MDEA solutions. Industrial & engineering chemistry research, 1995. 34(3): p. 874-880.
57. Cadours, R., et al., Kinetics of CO2 desorption from highly concentrated and CO2-loaded methyldiethanolamine aqueous solutions in the range 312− 383 K. Industrial & engineering chemistry research, 1997. 36(12): p. 5384-5391.
58. Mondal, T.K., Phase Equilibrium Modeling in Gas Purification System. 2009.
59. Srinivas, K., M. Rajagopal, and A. Suresh, Synthesis, characterization and testing for ferrofluids for mass transfer intensification. Int J Chem Sci, 2007. 5: p. 1913-1928.
60. Pang, C. and Y.T. Kang, Stability and thermal conductivity characteristics of nanofluids (H2O/CH3OH+ NaCl+ Al2O3 nanoparticles) for CO2 absorption application. 2012.
61. Rahimi, M. and M. Soleiman, Experimental Study of Carbon Dioxide Absorption from Air Stream in Rotating Packed Bed. Journal of separafion science and engineering, 2013. 5: p. 1-16.
62. Khan, A.A., G. Halder, and A. Saha, Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns. International Journal of Greenhouse Gas Control, 2015. 32: p. 15-23.
63. Zhang, P., et al., Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption. Journal of Environmental Sciences, 2008. 20(1): p. 39-44.
64. Vinke, H., P. Hamersma, and J. Fortuin, Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chemical Engineering Science, 1993. 48(12): p. 2197-2210.
65. Kaštánek, F., The volume mass transfer coefficient in a bubble bed column. Collection of Czechoslovak Chemical Communications, 1977. 42(8): p. 2491-2497.
66. Chen, P.-C., et al., Scrubbing of CO2 greenhouse gases, accompanied by precipitation in a continuous bubble-column scrubber. Industrial & engineering chemistry research, 2008. 47(16): p. 6336-6343.
67. Akita, K. and F. Yoshida, Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Industrial & Engineering Chemistry Process Design and Development, 1973. 12(1): p. 76-80.
68. Fair, J., Designing gas-sparged reactors. Chem. Eng, 1967. 74(14): p. 67-74.
69. Nakanoh, M. and F. Yoshida, Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. Industrial & Engineering Chemistry Process Design and Development, 1980. 19(1): p. 190-195.
70. Hikita, H., et al., The volumetric liquid-phase mass transfer coefficient in bubble columns. The chemical engineering journal, 1981. 22(1): p. 61-69.
71. Deckwer, W.D., et al., Fischer-Tropsch synthesis in the slurry phase on manganese/iron catalysts. Industrial & Engineering Chemistry Process Design and Development, 1982. 21(2): p. 222-231.
72. Luo, X., et al., Maximum stable bubble size and gas holdup in high‐pressure slurry bubble columns. AIChE journal, 1999. 45(4): p. 665-680.
73. Öztürk, S., A. Schumpe, and W.D. Deckwer, Organic liquids in a bubble column: holdups and mass transfer coefficients. AIChE journal, 1987. 33(9): p. 1473-1480.
74. Kars, R., R. Best, and A. Drinkenburg, The sorption of propane in slurries of active carbon in water. The Chemical Engineering Journal, 1979. 17(2): p. 201-210.
75. Zhou, M., W.F. Cai, and C.J. Xu, A new way of enhancing transport process–The hybrid process accompanied by ultrafine particles. Korean Journal of Chemical Engineering, 2003. 20(2): p. 347-353.
76. Ruthiya, K., et al., Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor. Chemical Engineering Journal, 2003. 96(1-3): p. 55-69.
77. Park, S.-W., et al., Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine. Journal of Industrial and Engineering Chemistry, 2008. 14(2): p. 166-174.
78. Samadi, Z., M. Haghshenasfard, and A. Moheb, CO2 absorption using nanofluids in a wetted‐wall column with external magnetic field. Chemical Engineering & Technology, 2014. 37(3): p. 462-470.
79. Seyf, H.R. and B. Nikaaein, Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks. International Journal of Thermal Sciences, 2012. 58: p. 36-44.
80. Komati, S. and A.K. Suresh, CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008. 83(8): p. 1094-1100.
81. Keshishian, N., M.N. Esfahany, and N. Etesami, Experimental investigation of mass transfer of active ions in silica nanofluids. International communications in heat and mass transfer, 2013. 46: p. 148-153.
82. Gerardi, C., et al., Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Applied Physics Letters, 2009. 95(25): p. 253104.
83. Wang, T., et al., Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions. Industrial & Engineering Chemistry Research, 2016. 55(28): p. 7830-7838.
84. Saeednia, L., H. Hashemipour, and D. Afzali, Study on mass transfer enhancement in a gas-liquid system using nanomaterials. 2015.
85. Krumbiegel, G., et al., Studies on the metabolism of aristolochic acids I and II. Xenobiotica, 1987. 17(8): p. 981-991.
86. Calderbank, P. and M. Moo-Young, The continuous phase heat and mass-transfer properties of dispersions. chemical Engineering science, 1961. 16(1-2): p. 39-54.
87. Hughmark, G., Holdup and mass transfer in bubble columns. Industrial & Engineering Chemistry Process Design and Development, 1967. 6(2): p. 218-220.
88. Akita, K. and F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Industrial & Engineering Chemistry Process Design and Development, 1974. 13(1): p. 84-91.
89. Schügerl, K., et al., Application of tower bioreactors in cell mass production, in Advances in Biochemical Engineering, Volume 8. 1978, Springer. p. 63-131.
90. Du, L., et al., Effects of nanoparticles with different wetting abilities on the gas–liquid mass transfer. Chemical Engineering Science, 2014. 114: p. 105-113.
- صفحات : 1-17
-
دانلود فایل
( 979.27 KB )