-
آرشیو :
نسخه بهار و تابستان 1401
-
کد پذیرش :
1245
-
موضوع :
سایر شاخه ها
-
نویسنده/گان :
| محمد سجاد واعظ زاده
-
زبان :
فارسی
-
نوع مقاله :
-
چکیده مقاله به فارسی :
کمبود شدید آب شیرین و آلودگی جهانی باعث حذف انتخابییون های هدف از محلول های دارای اهمیت زیادی برای تصفیه آب و بازیابی منابع می شود. دییونیزاسیون خازنی (CDI) یون ها و مولکول های باردار را از آب با اعمال میدان الکتریکی اعمال شده کم در سراسر الکترودها حذف می کند و به دلیل مصرف انرژی کمتر و پایداری آن توجه زیادی را به خود جلب کرده است. زمینه کاربرد آن در چند سال گذشته گسترش یافته است.در این مقاله، ما یک نمای کلی از وضعیت فعلی حذف انتخابییون در CDI گزارش میکنیم. این مقاله همچنین چشم انداز CDI انتخابی، از جمله نمک زدایی، نرم کردن آب، حذف و بازیابی فلزات سنگین، حذف مواد مغذی، و سایر تکنیک های رایج حذف یون را مورد بحث قرار می دهد. بینش حاصل از این بررسی، اجرای فناوریCDI را نشان میدهد.
-
لیست منابع :
[1] Masaru, K. Seawater Reverse Osmosis Desalination. Membranes 2021, 11, 243.
[2] Bharath, G., Hai, A., Rambabu, K., Pazhanivel, T., Hasan, S. W. & Banat, F. 2021 Designed assembly of Ni/MAX (Ti3AlC2) and porousgraphene-based asymmetric electrodes for capacitive deionization of multivalent ions. Chemosphere 266, 129048.
[3] https://doi.org/10.1016/j.chemosphere.2020.129048
[4] Blair, J.; Murphy, G. Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area. Saline Watter Convers. Am. Chem. Soc. 1960, 27, 206–223.
[5] Arnold, B.B.; Murphy, G.W. Studies on electrochemistry of carbon and chemically modified carbon surfaces. J. Phys. Chem. 1961, 65, 135–138.
[6] Caudle, D.D. Electrochemical demineralization of water with carbon electrodes. Sci. Rep. 1966, 4, 7397.
[7] Dong, Q., Yang, D., Luo, L., He, Q., Cai, F., Cheng, S. & Chen, Y. 2021 Engineering porous biochar for capacitive fluorine removal.Separation and Purification Technology 257. https://doi.org/10.1016/j.seppur.2020.117932.
[8] Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate Change Mitigation Strategy through Membranes Replacementand Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories.Water 2021, 13, 293.
[9] Elisadiki, J., Jande, Y. A. C., Kibona, T. E. & Machunda, R. L. 2019 Highly porous biomass-based capacitive deionization electrodes for waterdefluoridation. Ionics 26 (5), 2477–2492.
[10] https://doi.org/10.1007/s11581-019-03372-z.
[11] Gaikwad, M. S. & Balomajumder, C. 2017a Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): multicomponent isotherm modeling and kinetic study. Separation and Purification Technology 254, 117561.
[12] https://doi.org/10.1016/j.seppur.2017.06.017.
[13] Gaikwad, M. S. & Balomajumder, C. 2017b Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride bycapacitive deionization. Chemosphere 184, 1141–1149.
[14] https://doi.org/10.1016/j.chemosphere.2017.06.074.
[15] Hegde, R. M., Rego, R. M., Potla, K. M., Kurkuri, M. D. & Kigga, M. 2020 Bio-inspired materials for defluoridation of water: a review.Chemosphere 253, 126657. https://doi.org/10.1016/j.chemosphere.2020.126657.
[16] Huang, Q., Liu, Y., Cai, T. & Xia, X. 2019a Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite.Journal of Photochemistry and Photobiology A: Chemistry 375, 201–208.
[17] Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., Zhang, L., Zhou, J. & Peng, Q. 2019b Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega 4 (1), 1897–1906.
[18] Ihsanullah, I. 2020 MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges andprospects. Chemical Engineering Journal 388.
[19] https://doi.org/10.1016/j.cej.2020.124340.
[20] Ikeshoji, T. 2019 Separation of alkali metal ions by intercalation into a Prussian blue electrode. Journal of the Electrochemical Society 133 (10), 2108–2109. https://doi.org/10.1149/1.2108350.
[21] Gabelich, C.J.; Tran, T.D.; Suffet, I.H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 2002, 36, 3010–3019.
[22] Gao, Y.; Pan, L.K.; Li, H.B.; Zhang, Y.P.; Zhang, Z.J.; Chen, Y.W.; Sun, Z. Electrosorption behavior of cations with carbon nanotubesand carbon nanofibres composite film electrodes. Thin Solid Film. 2009, 517, 1616–1619.
[23] Li, Y.; Stewart, T.C.; Tang, H.L. A comparative study on electrosorptive rates of metal ions in capacitive deionization. J. WaterProcess Eng. 2018, 26, 257–263.
[24] Mossad, M.; Zou, L. A study of the capacitive deionisation performance under various operational conditions. J. Hazard. Mater.2012, 213, 491–497.
[25] Xu, P.; Drewes, J.E.; Heil, D.; Wang, G. Treatment of brackish produced water using carbon aerogel-based capacitive deionizationtechnology. Water Res. 2008, 42, 2605–2617.
[26] Ying, T.Y.; Yang, K.L.; Yiacoumi, S.; Tsouris, C. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel.J. Colloid Interface Sci. 2002, 250, 18–27.
[27] Tang, W.; Kovalsky, P.; Cao, B.; Waite, T.D. Investigation of fluoride removal from low-salinity groundwater by single-passconstant-voltage capacitive deionization. Water Res. 2016, 99, 112–121.
[28] Huang, S.-Y.; Fan, C.-S.; Hou, C.-H. Electro-Enhanced removal of copper ions from aqueous solutions by capacitive deionization.J. Hazard. Mater. 2014, 278, 8–15.
[29] Kim, T.; Dykstra, J.E.; Porada, S.; Van Der Wal, A.; Yoon, J.; Biesheuvel, P.M. Enhanced charge efficiency and reduced energy usein capacitive deionization by increasing the discharge voltage. J. Colloid Interface Sci. 2015, 446, 317–326.
[30] Wang, L.; Lin, S.H. Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening. Environ. Sci.Technol. 2019, 53, 5797–5804.
[31] Pastushok, O.; Zhao, F.; Ramasamy, D.L.; Sillanpaa, M. Nitrate removal and recovery by capacitive deionization (CDI). Chem. Eng.J. 2019, 375, 121943.
[32] Huyskens, C.; Helsen, J.; De Haan, A.B. Capacitive deionization for water treatment: Screening of key performance parametersand comparison of performance for different ions. Desalination 2013, 328, 8–16.
[33] Choi, J.; Lee, H.; Hong, S. Capacitive deionization (CDI) integrated with monovalentcation selective membrane for producingdivalent cation-rich solution. Desalination 2016, 400, 38–46.
[34] Jiang, S., Wang, H., Xiong, G., Wang, X. & Tan, S. 2018 Removal of nitrate using activated carbon-based electrodes for capacitive deionization. Water Supply 18 (6), 2028–2034. https://doi.org/10.2166/ws.2018.025.
[35] Pang, T.; Marken, F.; Zhang, D.; Shen, J. Investigating the role of dissolved inorganic and organic carbon in fluoride removal by membrane capacitive deionization. Desalination 2022, 528, 115618.
[36] Zhu, E.; Hong, X.; Ye, Z.; Hui, K.S.; Hui, K.N. Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes. Sep. Purif. Technol. 2019, 215, 454–462.
[37] Khandare, D. & Mukherjee, S. 2019 A review of metal oxide nanomaterials for fluoride decontamination from water environment. Materials Today: Proceedings 18, 1146–1155. https://doi.org/10.1016/j.matpr.2019.06.575.
[38] Kumar, P. S., Suganya, S., Srinivas, S., Priyadharshini, S., Karthika, M., Karishma Sri, R., Swetha, V., Naushad, M. & Lichtfouse, E. 2019 Treatment of fluoride-contaminated water. A review. Environmental Chemistry Letters 17 (4), 1707–1726. https://doi.org/10.1007/s10311-019-00906-9.
[39] Kumari, U., Mishra, A., Siddiqi, H. & Meikap, B. 2021 Effective defluoridation of industrial wastewater by using acid modified alumina in fixed-bed adsorption column: experimental and breakthrough curves analysis. Journal of Cleaner Production 279, 123645.
[40] Kushwaha, R., Bhaskar, D. & Mohan, S. a. D. 2020 An experimental study on some parameters for defluoridation using Capacitive Deionization with carbon electrodes. Journal of the Indian Chemical Society 97, 368–372.
[41] Li, Y., Jiang, Y.,Wang, T.-J., Zhang, C. &Wang, H. 2017 Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode. Separation and Purification Technology 172, 415–421. https://doi.org/10.1016/j.seppur.2016.08.043.
[42] Li, Y., Zhang, C., Jiang, Y. & Wang, T. J. 2018 Electrically enhanced adsorption and green regeneration for fluoride removal using Ti(OH)4- loaded activated carbon electrodes. Chemosphere 200, 554–560. https://doi.org/10.1016/j.chemosphere.2018.02.112.
[43] Li, D., Wang, S., Wang, G., Li, C., Che, X., Wang, S., Zhang, Y. & Qiu, J. 2019 Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination. ACS Applied Materials & Interfaces 11 (34), 31200–31209. https://doi. org/10.1021/acsami.9b10307.
[44] Liu, T., Liu, X., Graham, N., Yu, W. & Sun, K. 2020 Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science 593, 117431.
[45] Hawks, S.A.; Ceron, M.R.; Oyarzun, D.I.; Tuan Anh, P.; Zhan, C.; Loeb, C.K.; Mew, D.; Deinhart, A.;Wood, B.C.; Santiago, J.G.; et al. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization. Environ. Sci. Technol. 2019, 53,10863–10870.
[46] Singh, K.; Li, G.; Lee, J.; Zuilhof, H.; Mehdi, B.L.; Zornitta, R.L.; De Smet, C.P.M.L. Divalent Ion Selectivity in Capacitive Deionization with Vanadium Hexacyanoferrate: Experiments and Quantum-Chemical Computations. Adv. Funct. Mater. 2021, 31,2105203.
[47] Kim, J.; Jain, A.; Zuo, K.; Verduzco, R.; Walker, S.; Elimelech, M.; Zhang, Z.; Zhang, X.; Li, Q. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Res. 2019, 160, 445–453.
[48] Lizneva, D., Yuen, T., Sun, L., Kim, S.-m., Atabiekov, I., Munshi, L. B., Epstein, S., New, M. & Zaidi, M. 2018 Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition. Matrix Biology 71, 70–81.
[49] Malago, J., Makoba, E. & Muzuka, A. N. 2017 Fluoride levels in surface and groundwater in Africa: a review. American Journal of Water Science and Engineering 3 (1), 1–17. https://doi.org/10.11648/j.ajwse.20170301.11.
[50] Min, X., Zhu, M., He, Y., Wang, Y., Deng, H., Wang, S., Jin, L., Wang, H., Zhang, L. & Chai, L. 2020 Selective removal of Cl(-) and F(-) fromcomplex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere 251,126319.
[51] https://doi.org/10.1016/j.chemosphere.2020.126319.
[52] Mukherjee, A., Adak, M. K., Upadhyay, S., Khatun, J., Dhak, P., Khawas, S., Ghorai, U. K. & Dhak, D. 2019 Efficient fluoride removal and dye degradation of contaminated water using Fe/Al/Ti oxide nanocomposite. ACS Omega 4 (6), 9686–9696. https://doi.org/10.1021/acsomega.9b00252.
[53] Pan, J., Zheng, Y., Ding, J., Gao, C., Van der Bruggen, B. & Shen, J. 2018 Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane. Industrial and Engineering Chemistry Research 57 (20), 7048–7053. https://doi.org/10.1021/acs.iecr.8b00929.
[54] Park, G., Hong, S. P., Lee, C., Lee, J. & Yoon, J. 2021 Selective fluoride removal in capacitive deionization by reduced graphene oxide/ hydroxyapatite composite electrode. Journal of Colloid and Interface Science 581 (Pt A), 396–402. https://doi.org/10.1016/j.jcis.2020.07.108.
[55] Peng, Q., Liu, L., Luo, Y., Zhang, Y., Tan,W.-F., Liu, F., Suib, S. L. & Qiu, G. 2016 Cadmium removal from aqueous solution by a deionization supercapacitor with a birnessite electrode. ACS Applied Materials & Interfaces 8 (50), 34405–34413. https://doi.org/10.1021/acsami.6b12224.
[56] Podgorski, J. E., Labhasetwar, P., Saha, D. & Berg, M. 2018 Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environmental Science & Technology 52 (17), 9889–9898.
[57] Missoni, L.L.; Marchini, F.; Del Pozo, M.; Calvo, E.J. A LiMn2O4-Polypyrrole System for the Extraction of LiCl from Natural Brine. J. Electrochem. Soc. 2016, 163, A1898.
[58] Kim, S.; Yoon, H.; Shin, D.; Lee, J.; Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interface Sci. 2017, 506, 644–648.
[59] Dong, Q.; Guo, X.; Huang, X.; Liu, L.; Tallon, R.; Taylor, B.; Chen, J. Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane. Chem. Eng. J. 2019, 361, 1535–1542.
[60] Bryjak, M.; Siekierka, A.; Kujawski, J.; Smolinska-Kempisty, K.; Kujawski, W. Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions. J. Membr. Sep. Technol. 2015, 4, 110–115.
[61] Saleem, M. W. & Kim, W.-S. 2018 Parameter-based performance evaluation and optimization of a capacitive deionization desalination process. Desalination 437, 133–143. https://doi.org/10.1016/j.desal.2018.02.023.
[62] Senoussi, H. & Bouhidel, K.-E. 2018 Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters. Journal of Cleaner Production 205, 721–727.
[63] Shi, W., Zhou, X., Li, J., Meshot, E. R., Taylor, A. D., Hu, S., Kim, J.-H., Elimelech, M. & Plata, D. L. 2018 High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes. Environmental Science & Technology Letters 5 (11) 692–700. https://doi.org/10.1021/acs.estlett.8b00397.
[64] Srimuk, P., Kaasik, F., Krüner, B., Tolosa, A., Fleischmann, S., Jäckel, N., Tekeli, M. C., Aslan, M., Suss, M. E. & Presser, V. 2016 MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A 4 (47),18265–18271.
[65] Szuplewska, A., Kulpińska, D., Dybko, A., Chudy, M., Jastrzębska, A. M., Olszyna, A. & Brzózka, Z. 2020 Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in Biotechnology 38 (3), 264–279.
[66] Tang, W., Kovalsky, P., Cao, B., He, D. & Waite, T. D. 2016a Fluoride removal from brackish groundwaters by constant current capacitive deionization (CDI). Environmental Science & Technology 50 (19), 10570–10579. https://doi.org/10.1021/acs.est.6b03307.
[67] Tang,W., Kovalsky, P., Cao, B. & Waite, T. D. 2016b Investigation of fluoride removal from low-salinity groundwater by single-pass constantvoltage capacitive deionization. Water Research 99, 112–121. https://doi.org/10.1016/j.watres.2016.04.047.
[68] Xu, X.; Tan, H.;Wang, Z.;Wang, C.; Pan, L.; Kaneti, Y.V.; Yang, T.; Yamauchi, Y. Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ. Sci. Nano 2019, 6, 981–989.
[69] Xu, X.; Sun, Z.; Chua, D.H.; Pan, L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.Sci. Rep. 2015, 5, 11225
[70] Pasta, M.;Wessells, C.D.; Cui, Y.; La Mantia, F. A Desalination Battery. Nano Lett. 2012, 12, 839–843.
[71] Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H.Y. Dual-Ions electrochemical deionization: A desalination generator.Energy Environ. Sci. 2017, 10, 2081–2089.
[72] Min, X.; Zhu, M.; He, Y.; Wang, Y.; Deng, H.; Wang, S.; Jin, L.; Wang, H.; Zhang, L.; Chai, L. Selective removal of Cl- and F- fromcomplex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere 2020, 251, 126319.
[73] Tiwari, A. K., Singh, A. K. & Mahato, M. K. 2017 GIS based evaluation of fluoride contamination and assessment of fluoride exposure dose in groundwater of a district in Uttar Pradesh, India. Human and Ecological Risk Assessment: An International Journal 23 (1), 56–66.
[74] Wang, G., Li, D., Wang, S., Zhao, Z., Lv, S. & Qiu, J. 2021 Ternary NiFeMn layered metal oxide (LDO) compounds for capacitive deionization defluoridation: the unique role of Mn. Separation and Purification Technology 254. https://doi.org/10.1016/ j.seppur.2020.117667
[75] Wu, P., Xia, L., Dai, M., Lin, L. & Song, S. 2016 Electrosorption of fluoride on TiO2-loaded activated carbon in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 502, 66–73. https://doi.org/10.1016/j.colsurfa.2016.05.020.
[76] Wu, J.-C., Chen, S. S., Yu, T.-C., Wu, K. C. W. & Hou, C.-H. 2021 Effective electrochemically controlled removal of fluoride ions using electrodeposited polyaniline-carbon nanotube composite electrodes. Separation and Purification Technology 254. https://doi.org/10.1016/j.seppur.2020.117561.
[77] Yadav, K. K., Gupta, N., Kumar, V., Khan, S. A. & Kumar, A. 2018 A review of emerging adsorbents and current demand for defluoridation of water: bright future in water sustainability. Environment International 111, 80–108. https://doi.org/10.1016/j.envint.2017.11.014.
[78] Zhang, C. J. & Nicolosi, V. 2019 Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy StorageMaterials 16, 102–125.
[79] Zhang, J., Tang, L., Tang,W., Zhong, Y., Luo, K., Duan, M., Xing,W. & Liang, J. 2020 Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization. Separation and Purification Technology 237. https://doi.org/10.1016/j.seppur.2019.116322.
[80] Zhu, J., Ha, E., Zhao, G., Zhou, Y., Huang, D., Yue, G., Hu, L., Sun, N., Wang, Y., Lee, L. Y. S., Xu, C., Wong, K.-Y., Astruc, D. & Zhao, P. 2017 Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordination ChemistryReviews 352, 306–327. https://doi.org/10.1016/j.ccr.2017.09.012.
[81] Zou, G., Guo, J., Peng, Q., Zhou, A., Zhang, Q. & Liu, B. 2016 Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A 4 (2), 489–499.
[82] Zuo, K.; Kim, J.; Jain, A.; Wang, T.; Verduzco, R.; Long, M.; Li, Q. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process. Environ. Sci. Technol. 2018, 52, 9486–9494.
[83] Chen, X.H.; Deng, W.Y.; Miao, L.W.; Gao, M.; Ao, T.Q.; Chen, W.Q.; Ueyama, T.; Dai, Q.Z. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization. Environ. Technol. 2021; Online ahead of print.
[84] Park, G.; Hong, S.P.; Lee, C.; Lee, J.; Yoon, J. Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode. J. Colloid Interface Sci. 2021, 581, 396–402
[85] Cohen, I.; Shapira, B.; Avraham, E.; Soffer, A.; Aurbach, D. Bromide Ions Specific Removal and Recovery by Electrochemical Desalination. Environ. Sci. Technol. 2018, 52, 6275–6281.
[86] Shin, Y.-U.; Lim, J.; Boo, C.; Hong, S. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. Desalination 2021, 502, 114930.
[87] Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T.D. Faradaic reactions in capacitive deionization (CDI)—Problems and possibilities: A review. Water Res. 2018, 128, 314–330.
[88] Elisadiki, J.; King’ondu, C.K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J. Electroanal. Chem. 2020, 878, 114588.
[89] Huang, Z.; Lu, L.; Cai, Z.; Ren, Z.J. Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 2016, 302, 323–331.
[90] Mao, M.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Selective Capacitive Removal of Pb2+ fromWastewater over Redox-Active Electrodes. Environ. Sci. Technol. 2021, 55, 730–737.
[91] Kim, D.I.; Gwak, G.; Dorji, P.; He, D.; Phuntsho, S.; Hong, S.; Shon, H. Palladium Recovery through Membrane Capacitive Deionization from Metal Plating Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 1692–1701.
[92] Kim, S.; Lee, J.; Kang, J.S.; Jo, K.; Kim, S.; Sung, Y.-E.; Yoon, J. Lithium recovery from brine using a lambda -MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015, 125, 50–56.
[93] Fan, C.S.; Liou, S.Y.H.; Hou, C.H. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere 2017, 184, 924–931.
[94] Gabrielli, C.; Maurin, G.; Francy-Chausson, H.; Thery, P.; Tran, T.T.M.; Tlili, M. Electrochemical water softening: Principle and application. Desalination 2006, 201, 150–163.
[95] Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control. Desalination 2016, 392, 46–53
[96] EPA. U.S. Edition of the Drinking Water Standards and Health Advisories Tables; Environmental Protection Agency: Washington, DC, USA, 2018.
[97] Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159.
[98] Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessmentof associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal. Toxicol. 2017, 29, 483–493.
[99] Kim, Y.-J.; Choi, J.-H. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res. 2012, 46, 6033–6039.
[100] Xu, L.; Yu, C.; Tian, S.; Mao, Y.; Zong, Y.; Zhang, X.; Zhang, B.; Zhang, C.;Wu, D. Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. ACS ES&T Water 2021, 1, 175–184.
[101] Bian, Y.; Chen, X.; Lu, L.; Liang, P.; Ren, Z.J. Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization. ACS Sustain. Chem. Eng. 2019, 7, 7844–7850.
-
کلمات کلیدی به فارسی :
دیونیزاسیون خازنی، حذف یون انتخابی، مواد الکترود، نمک زدایی، فلزات سنگین.
-
چکیده مقاله به انگلیسی :
-
کلمات کلیدی به انگلیسی :
- صفحات : 1-13
-
دانلود فایل
( 509.05 KB )