-
آرشیو :
نسخه پاییز و زمستان 1399
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1253
-
موضوع :
موضوعی تعریف نشده!
-
نویسنده/گان :
علی حبیبی، محمدعلی دهنوی
-
کلید واژه :
کریستالیزاسیون، کریستال، صنایع دارویی، صنایع غذایی.
-
Abstract :
Crystallization, after distillation, is the most common separation processes in chemical industries. Properties like selectivity and low energy consumption, high purity solid phase production with specific morphology and also, proper size distribution have led to the popularity of this process. There is a vast usage of crystallization in chemical industries. In the current study, the application of this process in pharmaceutical and food industry is studied. The most common dosage of oral drugs is tablet. The ability of direct tableting is one of the most important properties which can be controlled by crystallization. Spherical crystallization can meet this need producing spherical crystals with narrow size distribution. Cocrystallization and anti-solvent crystallization, also, are of the methods which can improve drug properties like dissolution rate and flowability by narrow and proper size distribution of drug crystals. Similarly, crystallization of ingredients in food products can also improve their features, the most important ones of which is visual and sensual properties and shelf life. For instance, controlling crystallization of ice crystals in frozen food and desserts can surprisingly affect the quality and shelf life of them.
-
key words :
Crystallization, Crystal, Pharmaceutical Industry, Food Industry.
-
مراجع :
[1] H. M. Schoen, C. S. Grove, and J. A. Palermo, "The early history of crystallization," Journal of Chemical Education, vol. 33, no. 8, p. 373, 1956/08/01 1956, doi: 10.1021/ed033p373.
[2] "16 CRYSTALLIZATION FROM SOLUTIONS AND MELTS," in Chemical Process Equipment (Revised Second Edition), J. R. Couper, W. R. Penney, J. R. Fair, and S. M. Walas Eds. Boston: Gulf Professional Publishing, 2010, pp. 553-580.
[3] D. R. J. I. J. o. A. G. S. Cassar, "Crystallization driving force of supercooled oxide liquids," vol. 7, no. 3, pp. 262-269, 2016.
[4] Z. Zhang, J. Zhou, J. Yang, Y. Zou, Z. J. M. Wang, and Structures, "Cracking characteristics and pore development in concrete due to physical attack," vol. 53, no. 4, pp. 1-13, 2020.
[5] H. Huang, D. Zhang, J. Li, G. Guo, and S. J. J. o. c. p. Tang, "Phosphate recovery from swine wastewater using plant ash in chemical crystallization," vol. 168, pp. 338-345, 2017.
[6] K. Pal, Y. Yang, Z. K. J. C. G. Nagy, and Design, "Model-based optimization of cooling crystallization of active pharmaceutical ingredients undergoing thermal degradation," vol. 19, no. 6, pp. 3417-3429, 2019.
[7] J. Palkech, J. Kajan, S. Malyukov, M. Mikita, S. J. J. A. E. Medvecky, and P. Eng, "Numerical simulation of heat transfer in a furnace heating unit for horizontal direct crystallization of sapphire single-crystal," vol. 4, pp. 78-83, 2017.
[8] S. A. McBride, S. Dash, and K. K. J. L. Varanasi, "Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces," vol. 34, no. 41, pp. 12350-12358, 2018.
[9] B. Thirumalraj et al., "Nucleation and Growth Mechanism of Lithium Metal Electroplating," vol. 141, no. 46, pp. 18612-18623, 2019.
[10] C. Bian, H. Chen, X. Song, and J. J. J. o. C. G. Yu, "Metastable zone width and the primary nucleation kinetics for cooling crystallization of NaNO3 from NaCl-NaNO3-H2O system," vol. 518, pp. 5-13, 2019.
[11] Q. Chen et al., "Transformation of microstructure and phase of disodium guanosine 5′-monophosphate: Thermodynamic perspectives," vol. 26, no. 10, pp. 2112-2120, 2018.
[12] W. Su, N. Jia, H. Li, H. Hao, and C. J. C. J. o. C. E. Li, "Polymorphism of D-mannitol: Crystal structure and the crystal growth mechanism," vol. 25, no. 3, pp. 358-362, 2017.
[13] J. Bernstein, Polymorphism in Molecular Crystals 2e. International Union of Crystal, 2020.
[14] J. W. Andrews and M. J. J. P. T. Adams, "A fast multipole boundary element method implemented for wet single particle and wall interactions," vol. 341, pp. 140-146, 2019.
[15] M. J. A. p. b. Maghsoodi, "How spherical crystallization improves direct tableting properties: a review," vol. 2, no. 2, p. 253, 2012.
[16] H. Goczo et al., "Development of spherical crystals of acetylsalicylic acid for direct tablet-making," vol. 48, no. 12, pp. 1877.1881-2000.
[17] H. Zhang, Y. Chen, J. Wang, J. J. I. Gong, and e. c. research, "Investigation on the spherical crystallization process of cefotaxime sodium," vol. 49, no. 3, pp. 1402-1411, 2010.
[18] M. Maghsoodi, O. Taghizadeh, G. P. Martin, and A. J. I. j. o. p. Nokhodchi, "Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique," vol. 351, no. 1-2, pp. 45-54, 2008.
[19] Y. Kawashima, T. Niwa, T. Handa, and H. J. J. P. S. Takeuchi, "lwamoto, T.; Itoh, K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method," vol. 78, no. 1, pp. 68-72, 1989.
[20] A. Pawar, A. Paradkar, S. Kadam, and K. Mahadik, "Agglomeration of ibuprofen with talc by novel crystallo-co-agglomeration technique," AAPS PharmSciTech, vol. 5, no. 4, pp. 30-35, 2004.
[21] A. P. Pawar, A. R. Paradkar, S. S. Kadam, and K. R. Mahadik, "Crystallo-co-agglomeration: A novel technique to obtain ibuprofen-paracetamol agglomerates," AAPS PharmSciTech, vol. 5, no. 3, pp. 57-64, 2004.
[22] A. N. Usha, S. Mutalik, M. S. Reddy, A. K. Ranjith, P. Kushtagi, and N. Udupa, "Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates," European journal of pharmaceutics and biopharmaceutics, vol. 70, no. 2, pp. 674-683, 2008.
[23] Y. Kawashima, M. Imai, H. Takeuchi, H. Yamamoto, K. Kamiya, and T. J. P. t. Hino, "Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process," vol. 130, no. 1-3, pp. 283-289, 2003.
[24] A. Pawar, A. Paradkar, S. Kadam, and K. Mahadik, "Effect of polymers on crystallo-co-agglomeration of ibuprofen-paracetamol: Factorial design," Indian Journal of Pharmaceutical Sciences, vol. 69, no. 5, p. 658, 2007.
[25] M. Maghsoodi and F. Sadeghpoor, "Preparation and evaluation of solid dispersions of piroxicam and Eudragit S100 by spherical crystallization technique," Drug development and industrial pharmacy, vol. 36, no. 8, pp. 917-925, 2010.
[26] V. Gupta, S. Mutalik, M. Patel, and G. Jani, "Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties," Acta pharmaceutica, vol. 57, no. 2, pp. 173-184, 2007.
[27] A. Paradkar, A. Pawar, J. Chordiya, V. Patil, and A. Ketkar, "Spherical crystallization of celecoxib," Drug development and industrial pharmacy, vol. 28, no. 10, pp. 1213-1220, 2002.
[28] Z.-B. Zhang et al., "Micronization of silybin by the emulsion solvent diffusion method," vol. 376, no. 1-2, pp. 116-122, 2009.
[29] J. Varshosaz, N. Tavakoli, F. A. J. P. D. Salamat, and Technology, "Enhanced dissolution rate of simvastatin using spherical crystallization technique," vol. 16, no. 5, pp. 529-535, 2011.
[30] P. D. Martino, C. Barthelemy, F. Piva, E. Joiris, G. Palmieri, and S. Martelli, "Improved dissolution behavior of fenbufen by spherical crystallization," Drug development and industrial pharmacy, vol. 25, no. 10, pp 1081-1073. 1999.
[31] M. Maghsoodi, "Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique," Pharmaceutical development and technology, vol. 16, no. 5, pp. 474-482, 2011.
[32] M. Maghsoodi and A. Tajalli Bakhsh, "Evaluation of physico-mechanical properties of drug-excipients agglomerates obtained by crystallization," Pharmaceutical development and technology, vol. 16, no. 3, pp. 243-249, 2011.
[33] S. Kumar, G. Chawla, and A. K. Bansal, "Spherical crystallization of mebendazole to improve processability," Pharmaceutical development and technology, vol. 13, no. 6, pp. 559-568, 2008.
[34] C. L. Viswanathan, S. K. Kulkarni, and D. R. Kolwankar, "Spherical agglomeration of mefenamic acid and nabumetone to improve micromeritics and solubility: A technical note," AAPS PharmSciTech, vol. 7, no. 2, pp. E122-E125, 2006.
[35] M. Maghsoodi and M. Esfahani, "Preparation of microparticles of naproxen with Eudragit RS and Talc by spherical crystallization technique," Pharmaceutical development and technology, vol. 14, no. 4, pp. 442-450, 2009.
[36] A. Nokhodchi and M. Maghsoodi, "Preparation of spherical crystal agglomerates of naproxen containing disintegrant for direct tablet making by spherical crystallization technique," Aaps Pharmscitech, vol. 9, no. 1, pp. 54-59, 2008.
[37] F. Cui et al., "Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method," Journal of controlled release, vol. 91, no. 3, pp. 375-384, 2003.
[38] M.-s. Yang, B.-g. You, Y.-l. Fan, L. Wang, P. Yue, and H. Yang, "Preparation of sustained-release nitrendipine microspheres with Eudragit RS and Aerosil using quasi-emulsion solvent diffusion method," International journal of pharmaceutics, vol. 259, no. 1-2, pp. 103-113, 2003.
[39] D. Xia et al., "Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability," vol. 40, no. 4, pp. 325-334, 2010.
[40] H.-X. Zhang, J.-X. Wang, Z.-B. Zhang, Y. Le, Z.-G. Shen, and J.-F. J. I. j. o. p. Chen, "Micronization of atorvastatin calcium by antisolvent precipitation process," vol. 374, no. 1-2, pp. 106-113, 2009.
[41] Z. Wang, J.-F. Chen, Y. Le, Z.-G. Shen, J. J. I. Yun, and e. c. research, "Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation," vol. 46, no. 14, pp. 4839-4845, 2007.
[42] M. Mansouri, H. R. Pouretedal, and V. Vosoughi, "Preparation and characterization of ibuprofen nanoparticles by using solvent/antisolvent precipitation," in The open conference proceedings journal, 2011, vol. 2, no. 1.
[43] Z. Zhang, Y. Le, J. Wang, H. Zhao, and J. J. P. Chen, "Irbesartan drug formulated as nanocomposite particles for the enhancement of the dissolution rate," vol. 10, no. 4, pp. 462-467, 2012.
[44] M. Kakran, N. G. Sahoo, L. Li, and Z. J. P. t. Judeh, "Particle size reduction of poorly water soluble artemisinin via antisolvent precipitation with a syringe pump," vol. 237, pp. 468-476, 2013.
[45] C. Li, C. Li, Y. Le, and J.-F. J. I. j. o. p. Chen, "Formation of bicalutamide nanodispersion for dissolution rate enhancement," vol. 404, no. 1-2, pp. 257-26 . 2011.
[46] A. Paulino et al., "Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process," vol. 49, no. 2, pp. 294-301, 2013.
[47] Y. Liu et al., "Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles," vol. 13, no. 4, pp. 589-606, 2010.
[48] A. Zimmermann et al., "Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: Effects on physicochemical properties," vol. 71, no. 1, pp. 109-116, 2009.
[49] J. Hu, W. K. Ng, Y. Dong, S. Shen, and R. B. J. I. j. o. p. Tan, "Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying," vol. 404, no. 1-2, pp. 198-204, 2011.
[50] M.-W. Park, S.-D. J. C. E. R. Yeo, and Design, "Antisolvent crystallization of carbamazepine from organic solutions," vol. 90, no. 12, pp. 2202-2208, 2012.
[51] M. Kakran, N. G. Sahoo, I.-L. Tan, and L. J. J. o. N. R. Li, "Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods," vol. 14, no. 3, p. 757, 2012.
[52] M. Kakran, N. G. Sahoo, L. Li, and Z. J. P. T. Judeh, "Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution," vol. 223, pp. 59-64, 2012.
[53] C. Desai, X. Meng, D. Yang, X. Wang, V. Akkunuru, and S. J. J. o. c. g. Mitra, "Effect of solvents on stabilization of micro drug particles," vol. 314, no. 1, pp. 353-358, 2011.
[54] E. Cho et al., "Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives," vol. 396, no. 1-2, pp. 91-98, 2010.
[55] A. J. Raval and M. M. J. I. R. J. o. P. Patel, "Preparation and characterization of nanoparticles for solubility and dissolution rate enhancement of meloxicam," vol. 1, no. 2, pp. 42-49, 2011.
[56] T. Panagiotou, S. V. Mesite, R. J. J. I. Fisher, and e. c. research, "Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization," vol. 48, no. 4, pp. 1761-1771, 2009.
[57] S. Aitipamula et al., "Polymorphs, Salts, and Cocrystals: What’s in a Name?," Crystal Growth & Design, vol. 12, no. 5, pp. 2147-2152, 2012/05/02 2012, doi: 10.1021/cg3002948.
[58] N. Schultheiss and A. Newman, "Pharmaceutical Cocrystals and Their Physicochemical Properties," Crystal Growth & Design, vol. 9, no. 6, pp. 2950-2967, 2009/06/03 2009, doi: 10.1021/cg900129f.
[59] Ö. Almarsson and M. J. J. C. c. Zaworotko, "Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?," no. 17, pp. 1889-1896, 2004.
[60] M. Viertelhaus, R. Hilfiker, F. Blatter, M. J. C. G. Neuburger, and Design, "Piracetam co-crystals with OH-group functionalized carboxylic acids," vol. 9, no. 5, pp. 2220-2228, 2009.
[61] A. Y. Sheikh, S. Abd Rahim, R. B. Hammond, and K. J. J. C. Roberts, "Scalable solution cocrystallization: case of carbamazepine-nicotinamide I," vol. 11, no. 3, pp. 501-509, 2009.
[62] J. Holaň, L. Ridvan, P. Billot, and F. J. C. E. S. Štěpánek, "Design of co-crystallization processes with regard to particle size distribution," vol. 128, pp. 36-43, 2015.
[63] S. Kudo and H. J. J. o. c. g. Takiyama, "Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram," vol. 392, pp. 87-91, 2014.
[64] N. Rodríguez-Hornedo, S. J. Nehm, K. F. Seefeldt, Y. Pagan-Torres, and C. J. J. M. p. Falkiewicz, "Reaction crystallization of pharmaceutical molecular complexes," vol. 3, no. 3, pp. 362-367, 2006.
[65] K. Sugandha, S. Kaity, S. Mukherjee, J. Isaac, A. J. C. G. Ghosh, and Design, "Solubility enhancement of ezetimibe by a cocrystal engineering technique," vol. 14, no. 9, pp. 4475-4486, 2014.
[66] R. W. Hartel, R. Ergun, S. J. C. R. i. F. S. Vogel, and F. Safety, "Phase/state transitions of confectionery sweeteners: Thermodynamic and kinetic aspects," vol. 10, no. 1, pp. 17-32, 2011.
[67] R. W. Hartel, "Crystallization in Foods," in Handbook of Industrial Crystallization, A. Y. Lee, A. S. Myerson, and D. Erdemir Eds., 3 ed. Cambridge: Cambridge University Press, 2019, pp. 460- 478.
[68] D. M. Stasiak and Z. J. J. P. J. o. N. S. Dolatowski, "Efficiency of sucrose crystallization from sugar beet magma after sonication," vol. 23, no. 2, pp. 521-530, 2008.
[69] R. Bund and A. J. U. s. Pandit, "Sonocrystallization: effect on lactose recovery and crystal habit," vol. 14, no. 2, pp. 143-152, 2007.
[70] S. Martini, A. Suzuki, and R. J. J. o. t. A. O. C. S. Hartel, "Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat," vol. 85, no. 7, pp. 621-628, 2008.
[71] L. Zheng, D.-W. J. T. i. F. S. Sun, and Technology, "Innovative applications of power ultrasound during food freezing processes—a review," vol. 17, no. 1, pp. 16-23, 2006.
[72] F. Maleky, A. K. Smith, A. J. C. g. Marangoni, and design, "Laminar shear effects on crystalline alignments and nanostructure of a triacylglycerol crystal network," vol. 11, no. 6, pp. 2335-2345, 2011.
[73] G. Mazzanti, A. G. Marangoni, and S. H. J. F. R. I. Idziak, "Synchrotron study on crystallization kinetics of milk fat under shear flow," vol. 42, no. 5-6, pp. 682-694, 2009.
[74] G. Mazzanti, M. Li, A. G. Marangoni, S. H. J. C. g. Idziak, and design, "Effects of shear rate variation on the nanostructure of crystallizing triglycerides," vol. 11, no. 10, pp. 4544-4550, 2011.
[75] K. J. C. e. s. Sato, "Crystallization behaviour of fats and lipids—a review," vol. 56, no. 7, pp. 2255-2265, 2001.
[76] I. Foubert, K. Dewettinck, D. Van de Walle, A. Dijkstra, and P. J. T. l. h. Quinn, "Physical properties: structural and physical characteristics," pp. 471-534, 2007.
[77] R. D. O'brien, Fats and oils: formulating and processing for applications. CRC press, 2008.
[78] N. C. Acevedo, A. G. J. C. g. Marangoni, and design, "Toward nanoscale engineering of triacylglycerol crystal networks," vol. 10, no. 8, pp. 3334-3339, 2010.
[79] F. Maleky, K. L. McCarthy, M. J. McCarthy, and A. G. J. J. o. f. s. Marangoni, "Effect of cocoa butter structure on oil migration," vol. 77, no. 3, pp. E74-E79, 2012.
[80] N. Devos, D. Reyman, and S. J. F. C. Sanchez-Cortés, "Chocolate composition and its crystallization process: A multidisciplinary analysis," p. 128301, 2020.
[81] G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, P. W. J. O. P. R. Cains, and Development, "Sonocrystallization: the use of ultrasound for improved industrial crystallization," vol. 9, no. 6, pp. 923-932, 2005.
[82] W. T. Richards and A. L. Loomis, "THE CHEMICAL EFFECTS OF HIGH FREQUENCY SOUND WAVES I. A PRELIMINARY SURVEY," Journal of the American Chemical Society, vol. 49, no. 12, pp 3100-3086. 1927/01- 1927/12, doi: 10.1021/ja01411a015.
[83] Z. Guo, M. Zhang, H. Li, J. Wang, and E. J. J. o. C. G. Kougoulos, "Effect of ultrasound on anti-solvent crystallization process," vol. 273, no. 3-4, pp. 555-563, 2005.
[84] H. Li, J. Wang, Y. Bao, Z. Guo, and M. J. J. o. c. g. Zhang, "Rapid sonocrystallization in the salting-out process," vol. 247, no. 1-2, pp. 192-198, 2003.
[85] K. A. Ramisetty, A. B. Pandit, and P. R. Gogate, "Ultrasound-Assisted Antisolvent Crystallization of Benzoic Acid: Effect of Process Variables Supported by Theoretical Simulations," Industrial & Engineering Chemistry Research, vol. 52, no. 49, pp. 17573-17582, 2013/12/11 2013, doi: 10.1021/ie402203k.
[86] P. G. Vekilov, "Nucleation," Crystal Growth & Design, vol. 10, no. 12, pp. 5007-5019, 2010/12/01 2010, doi: 10.1021/cg1011633.
[87] Z. Yu, J. Chew, P. Chow, R. J. C. E. R. Tan, and Design, "Recent advances in crystallization control: an industrial perspective," vol. 85, no. 7, pp. 893-905, 2007.
[88] Z. Zhu et al., "Freezing Efficiency and Quality Attributes as Affected by Voids in Plant Tissues During Ultrasound-Assisted Immersion Freezing," Food and Bioprocess Technology, vol. 11, no. 9, pp. 1615-1626, 2018/09/01 2018, doi: 10.1007/s11947-018-2103-8.
[89] M. N. Islam, M. Zhang, Z. Fang, and J. Sun, "Direct contact ultrasound assisted freezing of mushroom (Agaricus bisporus): Growth and size distribution of ice crystals," International Journal of Refrigeration, vol. 57, pp. 46-53, 2015/09/01/ 2015, doi: https://doi.org/10.1016/j.ijrefrig.2015.04.021.
[90] B. Li and D.-W. Sun, "Effect of power ultrasound on freezing rate during immersion freezing of potatoes," Journal of Food Engineering, vol. 55, no. 3, pp. 277-282, 2002/12/01/ 2002, doi: https://doi.org/10.1016/S0264-00102(02)8774-0.
[91] Y. Xin, M. Zhang, and B. Adhikari, "Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.)," Ultrasonics Sonochemistry, vol. 21, no. 5, pp. 1728-1735, 2014/09/01/ 2014, doi: https://doi.org/10.10/16 j.ultsonch.2014.03.017.
[92] Q. Dai, J.-H. Cheng, D.-W. Sun, Z. Zhu, and H. Pu, "Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis)," Food Chemistry, vol. 197, pp. 257-265, 2016/04/15/ 2016, doi: https://doi.org/10.1016/j.foodchem.2015.10.073.
- صفحات : 27-39
-
دانلود فایل
( 718.14 KB )